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Abstract-Simple shear flows of dilute suspensions of spherical bubbles at large Reynolds numbers are studied by 
using numei-ical simulations and Idnetic theory. It is shown that the meax~-squax-e bubble velocity is very sensitive to 
the volume fraction and Reynolds number of the bubbles as well as on iilitiaI conditions. The ba!alce of energy con- 
tained in bubble velodty fluctuations plays an important role in the theology of the dispersed phase, which is generally 
non-Newtonian. 
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INTRODUCTION 

Bubbles suspended in a liquid are found in nature and in many 
indus~iaI processes such as bubble coluaams [Bando et al., 2000; 
Kim et aI., 2002] and cei~Lfuges in the pe~ochemical indm~ay, ccoI- 
ing devices of nuclear-reactor systems and air enlramed in the form 
of bubbles in iivea~ and at the surface of the oceans. Therefore, it is 
desirable to develop an analytical fran~ework for predicting macro- 
scopic behavior of bubble suspensions. A series of recent papers 
[BieshuveI and Gorissen, 1990; Sangaxli and Di&vania, 1993a; Zhang 
and Prosperetti, 1994; Bulthuis et al., 1994] provide a rigorous der- 
ivation of the equatiom of motion for a suspemion of bubbles with 
potential flow interactions. An important property rasing in these 
equations is the dispersed-phase pressure tensor, which depends on 
hydi-odynan~ic and collisionaI interactions between the bubbles and 
also on their velocity distribution. 

A unifon-n suspension of bubbles iising due to their buoyancy is 
subject to instabilities that lead to volume fiaction vmations. One 
mechanism that has long been studied is the instability to void fi-ac- 
tion waves resulting fi-om the bubble's added mass and the depen- 
dence of the drag force on volume fi, ction [BiesbuveI, 1995]. San- 
gani and Didwania [ 1993b] and Sm ereka [ 1993] have recently ob- 
served a second instability mechaxlism in dynamic simulations of 
potential flow. Their simulahons showed that bubbles form large 
clustei~ in planes nom~aI to gravity. In other words, the ut~OZTn 
state of bubble suspemion in the presence of nonzero mean rela- 
tive motion between the bubbles and stm:ounding liquid is gener- 
ally unstable. The basic mechanism by which this ~stability oc- 
curs is as follows. According to the potential flow theory, the pres- 
sure in the fluid between two bubbles rising side by side is lower 
than the vessure away fi-om the bubbles. This Bemoulli effect causes 
an atlractive force between pairs of bubbles that are oriented hon- 
zoiltally. Similar consideration of two bubbles oiiented vertically 
and rising through a liquid shows that there wilI be a repuksive force 
between them causing them to move away fi-orn each other. Thus, 
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in a suspension containing many bubbles, pairs of bubbles aligned 
horizontaUy occur quickly and grow ft~her with Nne to fozm clus- 
ters in horizor~al planes. The observed instability in the numerical 
simulations was thus explained in temps of microscale forces occur- 
zing between pairs of bubbles. In either case, the mecha~m that 
may tend to stabilize the hornogeneous suspension is the positive 
bubble pressure created by fluctuations in the bubble velocities. 

The pua'pose of the present work is to deten-nine the dis~ibution 
of bubble velocihes in a suspension of bubbles subject to simple 
sheax- flow with tmtential flow intezaction,s among the bubbles. This 
will be accornplished by using a mmericaI simulation method simi- 
lax- to that developed in Sangani and Didwania [1993b] and the re- 
salts of the smmlation will be inteapreted by using kinetic theoiies. 
It will be seen that the bubble collisions induced by sheafing motion 
can provide a quite effective mechanism for eiJlancing the bubble 
velocity fluctuations. 

The application of results based on the potential flow interac- 
tions to physical systems must be approached with caution. The po- 
ter~i~ flow approximation is rigorously valid for bubbles with slip 
boundary conditions in the dtmI limits of high Re3alolds number and 
low Weber number (so that bubble deformation can be n~Iected). 

The best system for approaching these limits is bubbles with di- 
axnetez~ of about 1 mm in water for which the Reynolds number is 
about 130 and the Weber number about 0.5. Even in this case the 
limits are only apv-oximately satisfied and the value of the poten- 
tial flow approxknation may depend upon the n a ~ e  of the inter- 
actions being described For example, potential flow would be ex- 
pected to be more accurate for collision between bubbles moving 
with substantially different speeds in different dkections than when 
the bubbles rise at nearly the same velocity. In more general cir- 
cumstances, such as solid-liquid or liquid-liquid suspensions and 
suspensions of bubbles with larger diameters (4 mm), which are 
typical of most of the experhqaental literature, bounclary layer sepa- 
ration plays an important role in the dynamics. 

Other methods currently under development ~Ladd, 1990] show 
promise for the possibility of sh-aalating suspensiom including bub- 
ble deformation and continuous phase vortlcity. However, we be- 
lieve that the relatively extensive simulation results and the mecha- 
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ns understanding that can be developed for bubbles with poten- 
tial flow interactions will provide a useful reference for understand- 
ing tilese more complex suspensions. 

In section 2 we biiefly describe the numez-ical simulation proce- 
dure and in section 3 we present the results of simulations and an 
approximate !dnetic theory of dilute bubbly liquids. We find that 
the steady state velocity variance depends, in a rather complicated 
mmme~; on the volume fraction ~ of bubbles and the Reynolds num- 
ber Re, based on shear rate. At Imge Re, and small ~), we fred mul- 
tiple steady states: if the initial variance is relatively large, then the 
final state variance is very large, of O((Re,/~)2). We refer to tim as 
an ignited state. On the other hmld, if the initial vavimlce is small, 
then the steady state, which we refer to as a quenched state, has a 
vmaishingly slnall vas-iance. 

The multiple steady states are shown to arise due to nonlinear 
dependence of tile dispez~ed-pbase shear viscosity on tile velodty 
variance of bubbles oi, equivalently, the temperature of the dis- 
persed-phase. We also find that the multiple steady states are observed 
are only when Re,>88 and ~ is sufficiently small (~<~(Re,)). For 
smaller Re,, the final state is quenched regardless of the initial con- 
ditions, and for Re~>88 and ~>~(Re,), the final steady state ks al- 
ways ignited. We also fred that tile dispei~ed-phase theology exhib- 
its normal s~ress differences. Fmally, m section 4 we assess approx- 
imate conditions under which tile shear-induced vas-imlce may be 
significant in stabilizing flows of bubbly liquids through pipes. 

The results presented here are prelimmary and limited to dilute 
bubbly liquids. We plan to report more complete investigation in- 
cluding the simulations and theory for non-dilute bubbly liquids and 
the question of stability of bubbly liquids under simple shear and 
gravity in a future publication. 

T H E  S I M U L A T I O N  M E T H O D  

The simulation method is desca-ibed in detail in Smgani and Did- 
wania [1993b]. Here, we bz-iefly suamnafize tile method indicating 
some modifications we have made in the present study. We con- 
sider motion of N spherical bubbles of radius a placed within a ~ i t  
cell of periodic array. Tile velocity w ~ of a representative bubble cz 
is written as a sum of the ensemble-averaged mixture velocity <u> 
and a relative velocity V: 

w~(t) = (u>(x~,t) +V~(t), (1) 

where x ~: is the position of tile center of tile bubble at time t. Sim- 
ilarly, the velocity of the fluid u(x, t)=<u>+u ' is written as a sum 
of <u> and u' where u' is the disturbance flow induced by the bub- 
bles moving with tile relative velocity w~(t). Dis~bmlce u' is as- 
suaned to depend only on the position and tile relative velocities of 
the bubbles. Thus, by definition <u~=0. In simulatiorxs we enforce 
this condition by requiring that the average of u' over the unit ceil 
vanishes at any given instmlt. We are interested in a large Reynolds 
number situation where tile hydi-odyr~nic interactions are domi- 
nated by potential flow, and therefore we write u'=Vq~ and solve 
V2~=0, subject to the boundary condition V(p-n=V<n on the sur- 
face of bubbles. Here, n is the urnt o~vard normal vector on the 
surface of the bubble 0~. As shown in Sangarn et al. [1991] and in 
Sangani and Di&vania [1993b], the velocity potei~al can be deter- 
mined to a very good accuracy with a point<tipole approximation 
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N 

q0 =G- x -  ~j~ D~- VSl(X-X~), (2) 

where $1 is a @een's function for Laplace equation in a peiicdic 
domain DIasimoto, 1959; Sangani et al., 1991] andD ~ is the dipole 
s~ength. The condition that the average of ff over the unit ceil must 
vmaish is satisfied by ta!dng (cf Sangani and Didwania [1993b]). 

N 

G =(4x&)~j~ D ~ (3) 

where "c is the volume of the unit ceil. PhysicaIly, G is the back flow 
camed by the relative motion of the bubbles. To calculate tile trajec- 
tory of  bubbles we must apply force balance on each bubble (as- 
sumed to be massless). The impulse defined by I~=-9~r 
plays a role analogous to the mornen~.~ of a partMe m Newto- 
nian mechanics. We wiite tile force balance as 

dI~ =F ~ =Fg + F~ +lq~ +F~ +F~, (4) 
dt 

where Fg=-4rca?/3 g is a force due to buoyancy, F~ is a viscous force, 
F<~> is a force due to temporal and spatial variations m the ensem- 
ble-averaged velocity <u> of the m i x , e ,  F~ ~ ks a force on the bub- 
ble during its collision with other bubbles, F2 is a force due to po- 
tential flow interactions. As shown in Sangani and Didwania [1993a], 
the last quantity is evaluated from 

N 

F 2 = -4~pZD~Dr : g g g S l ( x  ~ -xr) ,  (5) 
y - I  

where the singular imrt of Sl must be removed fi-om Sl for 7=c~ be- 
fore evaluating the third derivative of S~. The viscous force is evalu- 
ated by using a method desca-ibed in Sangani and Di&vmaia [1993b]. 
Tile main modifications in the present study are concerned ruth 
the evaluation of F<~ and F~. In Sangani and Didwarna [1993b] 
we considered a special case of constmlt average velocity, whereas 
in the present study we are interested in the case of simple shear. 
For this purpose we use a slightly modified version of the expres- 
sion proposed by Auton et al. [1988] 

D ( @ ,  x . . . .  O~_), ~, F(~).=m~7-~ )-1, 8x, ~x ), (6) 

where the derivatives of <u> are evaluated at x=x ~, m=4rcpa3/3 
is tile mass of fluid having tile same voDa-ne as the bubble and D/ 
Dt=O/Ot+<u>-V is a ~arne derivative following the average motion 
of the mix~-e. While we do not discuss about using (6), this relation 
is consistent witi1 several known results. Tile above expression can 
be shown to give the correct force on a bubble for the cases of(i) a 
small ~-nplitude oscillatory flow examined in Smlgmai et al. [1991 ], 
(ii) pure extensional flow <uT>=ecxj with %=% at least for which 
the flow is irrotational, and iii) the simple shear flow past a single 
spheiical bubble with weak sheas: No res~aictions on the magnitude 
of~ are needed for the va l i@ of(6) in the above two cases. Finally, 
(6) also gives tile con-ect lift force on a bubble in dilute dispersions 
in the presence of simple shear, for which tile magnitude of vortic- 
ity is small cornpared to V/a where V is a characteristic magnit~tde 
of bubbles' relative velocity. Thus, we expect it to provide a very 
good approximation for ignited states. Note that for tile case of an 
isolated bubbIe ruth velocity V f, the expression (6) reduces to the 
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one given by Auton et al. [1988] upon substituting I~=r, lVja~2. 
In simulations of non-deformable bubbles with potential flow, it 

is coira-aonly observed that the bubbles will cane into contact while 
stilI moving at a fkrlite relative velocity..hi a physical suspension 
such a collision could lead to a bubble bounce or to coalescence 
depending on the Weber number based on the relative velocity. For 
the sake of simplicity in the simulation, it is com, enient to assume 
that the bubbles always bounce aid this can be achieved in prac- 
tice without violating the flee slip boundary condition on the bubble 
strface through the addition of salt to the suspending water [Lessard 
aid Ziem~ski, 1971; Tsao and Koch. 1994]. Thus, we include a 
collisional force in the simulations to achieve an ene~boy aid momen- 
~ n  conserving bubble bounce. 1"tie collisional force F~ was evalu- 
ated in Sangani aid Didwaaia [19931o] by assuming the collision 
process to be instantaneous and momentum conserving. This has 
some difficulties in numerical implementation. To overcome tiffs 
we used a soft core repulsive potential to model the coIis process. 
Specifically, the collision force was taken to be 

N N 
F2=-V&0o with %=EEE,,[2a-lx'~-x~l]'. (7) 

Ct-I y-I 

Here F~r if bubbles 0~ and ? are not overlapping Otherwise, For-- 
A~ r where F~ is a constant and A,~, r is the cornponent of the reIative 
velocity V~-V r along the line joining the position of the bubbles at 
the onset of overlap. 

The numerical algorithm consisted of determining the force on 
each bubble given position and impulse of all the bubbles in the 
suspension and integrating Y=F" and x~=v ~ using a fot~th-order 
Runge-Kutta scheme. This method is more efficient and faster than 
the mc~fified Euler algorithm used in Sangaai and Didwaaia [1993b] 
for the integration of time. In the Runge-Kvr scheme, bubbles can 
be slightly overlapped depending on the Nne step inducing the inclu- 
sion of collisional force from soft core potential in detea'nining new 
velocities of bubbles. The time step for integration was chosen to 
scale with the root, mean-squared velocity of the bubbles. 

SIMULATION RESULTS AND KINETIC THEORY 
FOR SIMPLE SHEAR MOTION 

In this paper we shall consider simple shear motion of dilute bub- 
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Fig. 1. Tempe=tature as a function of time, inRial condition at var- 
ious Reynolds numbers and volume fraction 1~=0.005. 
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bly liquids under microgravity, i.e. g=O, and <u~=Tx28,q. The dis- 
tances are rendered non-dimensional with a, the velocity with a, 
and the N'ne with 1/?. Typical sinmlation results are illus~-ated in 
Fig. 1 which shows velocity va-iance <V2> as a fianction of time 
for ~)=0.005 at three different ReynoIds numbers Re,=Ta3//.t. We 
see that the f~laI steady state, at Re, = 140, depends on the initial con- 
ditions of velocity variance. If  the bubble suspension is stirred smf- 
ficiently before shea-ing, then the final state has very large velocity 
fluctuations. We shall refer to this as the ignited,state. I~ on the other 
hand, the initial velocity fluctuations are small, then the fmaI state 
has very small velocity fluc~atiorxs; the bubbles essentia~y follow 
the imposed stleas: We shall refer to this as the quenched state. Such 
multiple steady states are not observed for all Re, aid r the vol- 
ume fraction of bubbles. For exanple, as seen in Fig. 1, the final 
state is the ignited state when Re, = 170 regardless of the initial con- 
ditions. And, simila-ly, the final state ks always the quenched state 
when Re,= 80. 

Before we present an approximate kinetic theory and a more de- 
tailed comlm~-ison between the theory aid numerical smmlatiom, it 
will help to have a qualitative understanding of the phenomenort 
The steady state variance is deten-nined by balancing between the 
energy input in shearing the dispei~ion aid the viscous energy dis- 
sipation as shown in Fig. 2 graphically. The former can be approxi- 
mated to equal/a~3~ while the latter to 12rosa<V*2>. Energy input 
by shea-ing has non-linear dependence on velocity va-iance where- 
as energy loss due to viscous dissipation is linearly dependent on 
tempera~-e. From this balance, two stable solutions and one un- 
stable soMion exist The steady state is reached relying on the initial 
velocity va-iance. When the initial va'iance is below the umtable 
solution, the quenched state is reached. The ignited state will be ac- 
complished when the initial variance is above the unstable solu- 
tion. As volume fraction increases, the energy input line will shift 
to dotted line resulting in one stable steady state at higher volume 
fi-actions. Here, ~: is the (dh-nensional) dispei~ed-phase shear vis- 
cosity, n is the number density of bubbles, aid <V*2> ks the di- 
mensional velocity variance. In the ignited state, the collision time 
%=a/(t~<V*2> 1~) is much shorter than the viscous relaxation tinle 
%=pa!/(18bt), and the leading order velocity dis~ibution as Re, ---+~ 
is isotropic Maxwdlian owing to rigorous collisions of bubbles. 
Thus we can esN-nate g~ fronl the kinetic theory of gases by taking 
the mass of bubbles to be their virtual mass m/2 and the mean flee 
path to be a/~ to yield g~:--j3a<V*Z> It2. The eneIow balance then shows 

/ "  
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/," /,- . /  
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................. / ' /  r ..... ~ 7~,2=energy input by shea 

-7~llIenched sl~lte 

I= 
Velocity variance r <vz> 

Fig. 2. Graphical demonstration of multiple steady states in shear- 
ed bubble suspension. 
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that <V2>--CRe,/(~)2~a2. In the quenched state, <V2> is very small, 
and, consequently, %<<%. Thus, the majority of the bubbles move 
with the velocity of the fluid The velocity disixibufion ks expected 
be very different fi-om Ivlax'wellian because bubbles relax close to 
the local fluid velocity. The initial conditions influence the final steady 
state for intermediate values of Re, by setting up the initial value of 
the collision time. At smaller Re,, the viscous relaxation lame is small 
enough to dissipate the fluc~tatiom Ieaclmg always to the quenched 
state while the fluctuations induced by the imposed shear are suf- 
ficient at large enough Re, to eventually make "c~<<% correspond- 
ing to the ignited state. 
1. K i n e t i c  T h e o r y  

For a spatially homogeneous dispe:-sion of bubbles, the velocity 
dist:ibution function f(V) satisfies 

~+v..(vfl=o (8) 
Since (~ is very small, the bubbles only unde:go occasional interac- 
lions. It is well known that potential flow bubbles often undergo 
actual collisions and Tsao and Koch [1994] showed that for low 
Weber number bubbles with short-range retxflsive forces these col- 
Iisions are ::early elastic. In this simple kinetic theory we mlI n~Ieet 
the hydi-odynamic interactions between bubbles and treat the colli- 
sions as Ferfectiy elastic. Substituting in (4) ~=F~=O, F~=-12rcgaV, 
I=mV/2, F~,,>,7-(1/2)mV:Sj2 (I~ force), expressing the conhibution 
due to the collisional force in the notation of Chapman and Cowl- 
ing [1970], and non-dimensionalizing we obtain 

Of ~zk[(8~V,+St-,VOf] O,f 
Ot ~ - Ot (9) 

where the Stokes number, St=Re/18=l%=pTg/(18g), is a non-di- 
melxsio:lal viscous relaxation t~ne and 0~f/0t is the :ate of change in 
f at a fixed point due to coIlisional encounters. As shown in Chapter 
3 of Chalxnan and Cowling, this latter qu~:tity ks expressed in terms 
of  an integral 

--*t t ' -  ~dw~ dkk~ If(W) f (~ )  - f(w) f(w~)] (10) 

Here, w=<u>+V is the velocity of a representative bubble in col- 
I/sion with a~other bubble with velocity w:, the velocities of the bub- 
bles at the end of the collision encounter being ~ and w'~, and k 
and k~ are parameters that depend on the relative veIocities and ori- 
entation of the bubbles at the onset of the collision. For small ~ we 
exFect the disFez~ed-phase pressure to be dominated by its kinetic 
part and therefore L - ~ g n < I ,  Vff-~(1/2)p(~<V,V~> (cf Sangani 
and Didwania [1993a]). We shall non-&-nensionalize pressure by 
pya'/Z 

To detezmine the pressure and velocity v~iance, we multiply (9) 
by (~\~\~ and integrate over the velocity space to obtain 

+ [%, 6,5 + P,,Sj~ +2 St-' P,,] =O,(P,,), (II) 
0t 

where, in obtaining the terms inside the square brackets on the left- 
hand side, use has been of integration by parts, and 

O,(P,)) =- ~)IdVV, V,~t f. (12) 

To make fiai~er progress we need to determine f and %(Pu)- Exact 
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solution for f ks rather difficult to obtain and hence we have devel- 
oped approximate methods. First, we develop an approximation in 
which the shear-reduced collisions are neglected in evaluating 0~f/ 
0t, i.e., the actual velocities w, w~, etc. in (10) are replaced by the 
relative velocities V, V~, etc. The resulting theory will explain the 
oiigin of nmltiple steady states but not the absence of quenched state 
at high enough Re,. The theory will be subsequentiy mcx:lified to 
mclnde the shear-induced collisions which play an hnpol-t~t role 
in the behavior of  quenched states. 

We have developed two approximate theories for evaluating @~ 
(Pu)- Both give identical results. One ks boned on the method due to 
Cnad [ 1949] in which f ks exlmnded in a sez-ies of Hez:-nite tx)lyno - 
mials: 

05 
f(V) =[I  +~@~ --I 8, a ~ ) - -  +A~fM (13) 

3 , )ov ,  g j ' 

where f~e con-esponds to an isoix-opic Maxwellian disix-ibution. The 
corxsta:t % ks related to the second moments of velocity and tem- 
pem0are T by 

(v, 5} =T(8 u +%). 

The trace % is zero because the bubble phase temperature is one- 
third of the velocity variance. The series is ~uncated keeping only 
the fast two tenns and (10) and (12) are evaluated in terms of a v. 
Substituting for @o(Pu) in (11) and solving the resulting equations 
then yields av and Pu- In the other method, which we describe in 
more detail here, we model the collision process as similar to that 
be~veen IvlaxweI1 molecules. Thus, we assume that the force F be- 
~veen two bubbles is relmlsive and along the line joining the center 
of the two bubbles separated by a distance r ruth F=~a "5 where ~ is a 
corxsta:t of proportionality. For this spedal case it ~ms  out that the 
collision term (10) assumes a particularly simple form and one finds 

q)(p~j) = 5C ~)(p6~j - P~j), (14) 

where p=l/3P~ and ~ is a corxsta:t :-elated to ~c. Now in the Iimit 
St---~% we expect the variance to become very lane and the col- 
lision term on the right-hand side of (9) to dominate leading to 
isoix-opic Maxwellia: vebcity dish-ibution. The d/sFez~ed-phase vis- 
cosity wiI1 then be expected to approach the viscosity of dilute gas 
consisting of hard-sphere molecules. Matching with the known ex- 
pression for that viscosity requires 

5L*=SLT 1~ with 5L-24 (15) 
5N 

T---<V2>/3 being the bubble phase temperature. This choice of S~* is 
equivalent to choosing the force law constant ~c of Maxwell mole- 
cules to be proportional to T. 

Since T ~a in due course will be shown to be O(1/@, it should be 
noted that~(~=O(1 ) and the right,ha~d side of (11) is the same order 
of magnitude as the other terms in that equation in the limit (~---~0. 
Thus, we need to keep the collision term in our analysis even for 
very dilute suspensions. Now substituting (14) and (15) into (11), 
using p=(~<vkve >/3 =(~ T, and so lv mg for the steady state conditions, 
we obtain 

_ Pl~ _ ) ~ T  3/2 
P, , -P~ St_,+~%T, ~ St_,+~LT,~, (16) 
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P,, s162 ~ 
P'~ 2(St-' +r163 2(St-' +r ~ (ID 

256 ~ 64 s ~1- + 4 ~ +  9 ] 
P,,=4P~ = 3 ~ S t ~ ,  P= = 3 ~ S t  ~/1  X 88s (2I) 

and P23=PSl=0. To complete the solution we need to detemlme T. 
This is accomplished by taking the trace of (11) to yield at steady 
state the energy equation for the dispersed phase 

Pl~ +3~St-IT =0 (I8) 

according to which tile work done in sheaing the suspension is dis- 
sipated by the viscous d&ag Substituting for P ~2 from (17) into (18) 
yields a cubic equation for T :a whose three roots including zero are 
given by 

~a 5~~StFl _ 12_+ i_~-j~4 ] (19) 

where we have used the numerical estimate of % fronl (15). 
It is easy to show that T2 con-esponds to an unstable state so that 

the quenched and ignited states we found in numeiical simulations 
(cs Fig. 1) correspond respectively to T~ and T> Moreover, we see 
that the ignited state exists only when Re,=18St exceeds a critical 
value given by Reo. = 18,0/-~=88.18 .... This explains why the fmaI 
state is the quenched state regardless oft_he initial variance for Re, = 
80. For Re,=140, the vmJance con-esponding to the unstable state 2 
is approximately 4.3 according to (19). Thus, as discussed in the 
earlier, if initial vaiance is smaller than this value, the fmaI state 
must be tile quenched state, and a higher initial vaiance should lead 
to the ignited state. Simulations for Re,=140 qualitatively agree with 
this prediction although we fred that even a slightly higher initial 
vmiance of 6 leads to a quenched state. In fact, tile variance reaches 
a maximum of about 15 before eventnally decreasing to a vanish- 
ingly small value con-esponclmg to tile quenched state. This quanti- 
tative discrepancy may arise due to a number of reasons including 
(i) the neglect of shea-indnced collisions in the theory, (ii) finite 
number of bubbles (N=32) used in the numerical simulations, (iii) 
the use of soft core rep~ive  potential m simulations, and (iv) the 
neglect of hydi-odynmnic interactions in the theory. Finally, we see 
that the theory we have presented fails completely in the case of 
Re, = 170 in predicting the existence of only one stable state. 

The theory we have presented so far ks adequate for detemlitmg 
the steady state variance in the ignited state for which the root-mean- 
squared velocity is much greater than Ta and for giving the ciite- 
don for extinction of tile ignited state, i.e. Re,<Reo. However, the 
preceding theory gives poor estimates for T~ and T2 because it ne- 
glects shear-induced collisions which are important for these ~vo 
states. 

To improve the theory, we now consider tile limit in which the 
root,mean-squm-e velocity is much smaller than ya, a si~ation ap- 
plicable to the quenched state. Since the collisions are infrequent m 
this state, %<<'c~ and tile :najo:ity of bubbles aavel with tile ve- 
locity of the fluid. Therefore, in t t~  limit q)~(Po) (cf (12)) can be 
detemlined from simple geonlea-ic conside, ations by using w=<u> 
to yield 

512 .2 
Oo(P,,) =2Oo(P~)=8q)o(P~s) =3- - -~ , ,  O~(P,~)=_ 8<~ (20) 

and %(P~s)=%(P~3)=0. Substitqm_ng for %(P~.) from (18) into (9) 
and solving for steady state conditions yield 

64 ~ ~ 9~ [1 (22) 
Thus, the quenched state variance is dominated by the value of <V~> 
and equals roughly (64~315)St~r in the lknit of small r for Stokes 
m~bers  of magm~Me 5 or greater. At r and Re,=18St = 
140, the conditions for tile simulations shown m Fig. 1, this gives 
an approximate vmiance of 1.5 whereas the simulation gave a vamh- 
ingly small mrnbe~ This occurs because the bubbles arrange them- 
selves even~ally in positions where avoid collisions malmg their 
velocities tile same as tile local fluid velocity and it is therefore an 
artifact of the s im~t ion  with periodic boundary conditions. It is 
possible to avoid t t~  problem in sinmlatiom that neglect hydi-ody- 
namic interactions by using the Direct-simulation lVlonte Carlo meth- 
od [Kuanaran et al., 1993]. 

We have shown that the ignited state exists for all Re,>Reo.. Now 
we shall determine in what part of this regime, one has multiple 
steady states and in what portion only the ignited state exists. I f  the 
shear-induced vasiance Re3r is greater than the valance of the un- 
stable state 2, i.e. O(Re23r -~) (cf (19)), then the hnposed shear roll 
create enough velocity fluctuations to take the suspension past tile 
unstable state 2 even when the initial variance is zero. Conse- 
quently, only the ignited state will exist when Re,3r exceeds a certain 
O(1) number. To eslknate this number we cons~ucted an ad-hoo 
approximation for O~(P,j) by superimposing its values in the two 
limits as given by (14) and (20). Solving the resulting equations for 
P,j at steady state yielded a quadratic equation m T ~2. One root of 
t t~  equation is always negative and the other three con-espond qual- 
itatively to the tt~ee solutions (quendled, unstable, and ignited) given 
by (19). However, when r is increased fforn zero at a fixed value 
of St=Re/18 that ks greater thai ~ /~ ,  we now find that the quenched 
and unstable state variances approach each other. The variances of 
these two states become equal at 

2 1/3 
, /7875~'~ -s 
% =~ 2 ~ - )  St , or St3,~ =3.23IK (23) 

For r162 the two roots become complex so that the oiliy physi- 
calIy meaningful solution to the equations corresponds to the ignited 
state. 

The above criterion can also be used for estimaug Re, beyond 
which the only steady state is the ignited state for given r At @= 
0.005, this yields tile transition Re, of 155.6. T t~  is in agreement 
with the simulations shown in Fig. 1 for which the multiple states 
are observed at Re, = 140 but only the ignited state at Re, = 170. 
2. C o m p a r i s o n  wi th  S i m u l a t i o n s  

We now compare the theory and simulations in more detail. Fig. 
3 is the phase diaga-an of quendlecl, ignited, and multiple (quenched 
plus ignited) states for bubbly liquids. For small r we expect only 
the quenched state when Re, is less than 88 and the multiple (quench- 
ed plus ignited) states for Re,>88 and r x183=18843. 
For each value of  r we carry out simulations at different values 
of Re, with an initial variance of zero and determine the critical value 
of Re, for wl-nch the final state ks ignited_ The pluses are the results 
obtained by simulations with N=32 and fi~l hydrcdynamic inter- 
actions together with tile soft core repulsive potential for overlap- 
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Fig. 3. Multiple steady states-ignited state transition. The solid 
curve is the theory prediction fl'om kinetic theory and 
squares and triangles are, respectivel); the results of simu- 
lations with and without hydrodynamic interactions. 
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Fig. 4. Temperatures with respect to Reynolds numbers for 1~= 
0.03 with theoretical predictions as shown dashed line. The 
squares are the results obtained fi'om the shnulations wRh 
soft-core potential, and diamonds are the results for hard 
core potential 

ping bubbles as described in section 2. For the purpose of coml~ison 
with the theory which neglected the hydi-od3mamic interactions al- 
together and modeled the collision process as that corresponding to 
hard spheres, we also can-ied out another set of simplified simula- 
lions m which these conditions were satisfied exactly. These simu- 
lations with N=100 are shown by circles. The latter results were 
also confm-ned to be flee fi-om fm_ite N effects by another- method 
[Direct-simulation Monte Carlo, Ktrnaran et al., 1993]. We believe 
that the better agreement obtained with the full hy&odynanic in- 
teraction calculations represented by the pluses is foltuitous. 

Fig. 4 shows a compmson be~veen the theory (cf (19)) and sh-a- 
ulations at ~)=0.03 varying Reynolds number. For t t~ ~), the criti- 
cal Re, for multiple steady states to exist is about 86 which approxi- 
mately coincides with the extinction of the ignited state branch so 
that we observe only the ignited state at larger Re,. The sh-nulation 
results indicated by filled circles were obtained with full hydrody- 
namic intemclJons and soft core potential. We fmd that there is con- 
sidemble discrepancy between the theory and simulations. This re- 
sults from the use of soft core potential m simulations which allow 
bubbles to overlap considerably resulting in a decrease in the eppar- 
ent volume ~acfion of bubbles. Since the variance varies roughly 

I ~3netlc 

A f d  

. . . . . .  . . . . . . . . .  . . . . . . . . . .  

20 ~ ~ ~ 100 
~me, t 

Fig. 5. The kinetic, collisional, and hydrodynamic contributions to 
the bubble-phase shear viscosity for Re~=150 and ~=0.03. 

as 1/02, the use of soft core potential results in a higher variance. 
To correct for this effect we carded out simulations with no hydro- 
dynamic interactions with troth soft as well as hard core potentials. 
The open circles in Fig. 4 represent the results obtained by mul1s 
plying the results of flail hydi-odyi~m-nic interactions with the cor- 
rection ratio accounting for the use of soft core potential. We see 
that with this correction, the theory and simulations are in very gocd 
agreeraent with each othei: 

Fig. 5 shows the !dnetic, colIisional, and hydrodynamic (or poten- 
tial) contrib~aons [cf. Sangani and Didwania 1993a; Bulthuis et 
al., 1994 for definitions] to the dispersed-phase shear viscosity (non- 
dimensionalized by 1/2pya 2) t.t,=-P~2 as Izme progresses. As expected, 
the collision and potential pats are seen to make negligible coi~i- 
butions to the overall value of shear viscosity at (~=0.03. Note that 
potential interaction between bubbles is still significant m dynam- 
ics. The average value of the Idnetic part is seen to be in a very good 
agreement with the value predicted by theory (cf. (17)) provided 
that we use the value of average vaiiance computed in simulations 
to substitute for T instead of using (19). This distinction is neces- 
sary to make since T for the soft core potential is different from the 
theoretical estimate. 

Fig. 6 shows a compmison between the theory and simulatiorxs 
for P J P , .  The computed values include the collision and hydro- 
dynamic parts aIso. Once again we see a reasoilable agreement be- 
tween the two. More importantly, it must be noted that the dis- 
peised-phase exhibits considerable nom~al stress differences. 

2 
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S~ulagon cesults at each 

100 2~1 300 400 
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Fig. 6. Pn/Pn as a function of thne for Re~=150 anti 0=0.03. 
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FinaIly, we note that a discuepancy that still rereads between the 
theory and simulations is the rather high value of the max:mum var- 
iance seen in Fig. 1 for the quenched state simulation with Re,=140. 
Even after accounting for the shear-induced varia:ce, our approxi- 
mate theory estimates the variance of the unstable state 2 to be ap- 
proximately 5 which is much bwer that: the maximum value of 
about 15 obtained in the simulation. Thus, it appears that our theory 
underestimates the magnitude of the variance in the unstable state. 

CONCLUDING R E M A R K S  

In tiffs paper we have addressed the problem of the dispersed- 
phase rheology in suspensions of sphe:ical bubbles at relatively large 
Resmolds numbers. We found that the theology is quite complex 
even when the microscale physics governing the bubble motion is 
considerably simplified in teans of lift and viscous forces. The key 
to unde:~tanding the results of simulations has been to appreciate 
the dependence of the dispersed-phase viscosity on its temperat:tre. 
This dependence is nonlinear and gives rise to multiple steady states. 
The calculations presented here also show a need to include the en- 
ergy hala:ce and tempera0are in the averaged descu'iption of flows 
of  suspensions. 

OL: simulations and theory have thus far been res~cted to small 
where the shea-induced flucmatiom are the Iatgest We have ex- 

tended the theory to higher volume fiactions by using the theory of 
dense gases and Cu-ad's moment expansion approximation (cf. (13)). 
The predictions of tiffs theory are being cunentiy tested for non- 
dilLte suspensions. 

One motivation of tiffs study was to investigate the possibility 
that the presence of shear may stabilize bubbly liquids. We ca :now 
make a rough estimate of when stabilization is possible. At present 
we are studying the flow of bubbly suspension under simple shear 
in the presence of  gravity. 

h: that case the dispe:sed-phase pressure depends on both the 
mean relative velocity of the bubbles reduced by buoyancy and lift 
forces and mean shear rate. The mean relative motion gives a ne- 
gative co:~-ibution to the pressure via hy&odynamic conh-ibution 
as shown in Sangani and Didwania [1993a], while the shear gives 
a positive contribution via the idnetic and collision con~ribLaons. 
An exact cu-ite:-ion for the stability has not been determined yet, but 
preliminmy calculations (simulations) already show that the sus- 
pension is stable at least when the Reynolds number based on shear 
is in the ignited state regime. Thus, Ietus take Re,=pN~/g=100 for 
the purpose of esamating when shear may play an important stabi- 
lizing role. For 1 nun radius bubbles in water, this requires 7;" 100 s -:. 
For air-water system with ya = 10 curds, the small We approxima- 
tion is justified since We-~ 0.14. To provide y of 100 s-: in a flow of  
bubbly suspension tl~-ough a pipe of radius R (in cu-n) we need the 
mean flow rate to be 1 (?0R (in cm/s). Since we are dealing with large 
Resmolds numbers, one question that immediately comes to mind 
is what if the ~-bulence would set up much before the high shear 
required for the s state. Taking the mean flow rate to equal 
yR, the Reynolds number R 9 based on the pipe radius will be100 
(R&) ~. This will be indeed quite large for many practical applica- 
tions. However, it should also be noted that the 0arbulence will be 
considerably delayed due to high Resmolds stress created by the 
vebcity fluctuations induced by the presence of shear. A l:arameter 

that is expected to be more important in detemmm:g the onset of 
t:trbulence is Re~=R%~t/~t *, the Reynolds number based on the ef- 
fective viscosity t~* of the mix0are. From the definition of the mix- 
ture stress given in Biest:euveI and Wijngaarden [1984] and San- 
gain and Di&vanla [1993a], we fred that the effective viscosity of 
the mix~e  in the ignited state ks close to the dispe~'sed-phase viscos- 
ity, or, in the present example, g%100 g. ThLts, in fact, it is pos- 
sible to have a significant range of R/a and Pep values over which 
the mean flow ~:dll be steady and one-dimensional. We hope to ca'ry 
out a more detailed analysis based on averaged equations to test 
this speculation in our future work 
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