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Abstract—Simple shear flows of dilute suspensions of spherical bubbles at large Reynolds numbers are studied by
using numerical simulations and kinetic theory. It 1s shown that the mean-square bubble velocity 1s very sensitive to
the volume fraction and Reynolds number of the bubbles as well as on initial conditions. The balance of energy con-
tained in bubble velocity fluctuations plays an important role in the rtheology of the dispersed phase, which is generally

non-Newtonian.
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INTRODUCTION

Bubbles suspended m a hquid are found n nature and in many
mdustrial processes such as bubble columns [Bando et al., 2000;
Kim etal, 2002] and centrifuges m the petrochemical mdustry, cool-
mg devices of nuclear-reactor systems and air enfrained in the form
of bubbles i ivers and at the surface of the oceans. Therefore, 1t 1s
desmable to develop an analytical framework for predicting macro-
scopic behavior of bubble suspensions. A series of recent papers
[Bieshuvel and Gorissen, 1990; Sangaru and Didwarua, 1993a; Zhang
and Prosperetti, 1994; Bulthuis et al,, 1994] provide a ngorous der-
wation of the equations of motion for a suspension of bubbles with
potential flow interactions. An mportant property arising in these
equations 1s the dispersed-phase pressure tensor, which depends on
hydrodynamic and collisional mteractions between the bubbles and
also on their velocity distribution.

A uruform suspension of bubbles rising due to their buoyancy 1s
subject to mstabilities that lead to volume fraction variations. One
mechanism that has long been studied is the mstability to void frac-
tion waves resultmg from the bubble’s added mass and the depen-
dence of the drag force on volume fraction [Bieshuvel, 1995]. San-
gani and Didwartia [1993b] and Smereka [1993] have recently ob-
served a second mstability mechamsm i dynamic simulations of
potential flow. Their simulations showed that bubbles form large
clusters m planes normal to gravity. In other words, the uriform
state of bubble suspension m the presence of nonzero mean rela-
tive motion between the bubbles and surrounding liquid 15 gener-
ally unstable. The basic mechanism by which this instability oc-
curs 1s as follows. According to the potential flow theory, the pres-
sure m the fluid between two bubbles rising side by side is lower
than the pressure away from the bubbles. This Bernoulli effect causes
an attractive force between pawrs of bubbles that are oriented hori-
zontally. Similar consideration of two bubbles oriented vertically
and rismg through a hiquud shows that there will be a repulsive force

between them causmg them to move away from each other. Thus,
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11 a suspension contaming marny bubbles, pairs of bubbles aligned
horizontally oceur quickly and grow further with tune to form clus-
ters in horizontal planes. The observed mstability n the numerical
simulations was thus explamed in terms of microscale forces occur-
ring between paus of bubbles. In either case, the mechamsm that
may tend to stabilize the homogeneous suspension is the positive
bubble pressure created by fluctuations i the bubble velocities.

The purpose of the present work 1s to determine the distribution
of bubble velocities m a suspension of bubbles subject to simple
shear flow with potential flow mteractions among the bubbles. This
will be accomplished by using a numerical simulation method simi-
lar to that developed m Sangar and Didwania [1993b] and the re-
sults of the simulation will be mterpreted by usmg kinetic theories.
It will be seen that the bubble collisions mduced by shearing motion
can provide a quite effective mechanism for enhancing the bubble
velocity fluctuations.

The application of results based on the potential flow mterac-
tions to physical systems must be approached with caution. The po-
tential flow approximation is rigorously valid for bubbles with ship
boundary conditions n the dual limits of lugh Reynolds number and
low Weber number (so that bubble deformation can be neglected).

The best system for approaching these limits is bubbles with di-
ameters of about 1 mm in water for which the Reynolds number 15
about 130 and the Weber number about 0.5. Even m this case the
lumits are only approximately satisfied and the value of the poten-
tial flow approximation may depend upon the nature of the mter-
actions bemng described. For example, potential flow would be ex-
pected to be more accurate for collision between bubbles moving
with substantially different speeds m different directions than when
the bubbles rise at nearly the same velocity. In more general cir-
cumstances, such as solid-liqud or hquid-hquid suspensions and
suspensions of bubbles with larger diameters (4 mm), which are
typical of most of the experimental literature, boundery layer sepa-
ration plays an important role m the dynamics.

Other methods currently under development [Ladd, 1990] show
promuse for the possibility of simulating suspensions mchiding bub-
ble deformation and continuous phase varticity. However, we be-
lieve that the relatively extensive simulation results and the mecha-
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rustic understanding that can be developed for bubbles with poten-
tial flow mteractions will provide a useful reference for understand-
mg these more complex suspensions.

In section 2 we briefly describe the numerical simulation proce-
dure and 1 section 3 we present the results of simulations and an
approximate kinetic theory of difute bubbly liquids. We find that
the steady state velocity variance depends, m a rather complicated
manner, on the volume fraction ¢ of bubbles and the Reynolds mum-
ber Re, based on shear rate. At large Re, and small ¢, we find mul-
tiple steady states: 1f the imitial variance is relatively large, then the
final state variance is very large, of O((Re,/¢)"). We refer to this as
an ignited state. On the other hand, 1f the mutial variance 1s small,
then the steady state, wiuch we refer to as a quenched state, has a
vamshingly small vaniance.

The multiple steady states are shown to arise due to nonlinear
dependence of the dispersed-phase shear viscosity on the velocity
variance of bubbles or, equivalently, the temperature of the dis-
persed-phase. We also find that the multiple steady states are observed
are only when Re>88 and ¢ 1s sufficiently small (¢<¢.(Re,)). For
smaller Re,, the final state is quenched regardless of the imtial con-
ditions, and for Re>88 and ¢=¢.(Re,), the final steady state 1s al-
ways 1gnited. We also find that the dispersed-phase rheology exhib-
1ts normal stress differences. Finally, in section 4 we assess approx-
mate conditions under which the shear-induced variance may be
significant in stabilizing flows of bubbly liquds through pipes.

The results presented here are prelimmary and limited to dilute
bubbly hiquids. We plan to report more complete mvestigation m-
cluding the simulations and theary for non-dilute bubbly Liquids and
the question of stability of bubbly liquids under simple shear and
gravity m a future publication.

THE SIMULATION METHOD

The sumulation method 15 described m detal m Sangant and Dad-
wania [1993b]. Here, we briefly summarize the method imndicating
some modifications we have made n the present study. We con-
sider motion of N spherical bubbles of radius a placed within a unit
cell of periodic array. The velocity w” of a representative bubble o
1s written as a sum of the ensemble-averaged mixture velocity <u>
and a relative velocity V:

W) = (W (x",1) +V(1), ey

where x* 1s the position of the center of the bubble at time t. Sim-
larly, the velocity of the fluid u(x, t)=<u>+u' is wnitten as a sum
of <u> and u' where o' is the disturbance flow mduced by the bub-
bles moving with the relative velocity w*(t). Disturbance u' 1s as-
sumed to depend only on the position and the relative velocities of
the bubbles. Thus, by defimition <u*>=0. In simulations we enforce
this condition by requiring that the average of w' over the unit cell
varushes at any given mstant We are mterested m a large Reynolds
number situation where the hydrodynamic mteractions are domi-
nated by potential flow, and therefore we write u'=V@ and solve
V=0, subject to the boundary condition V@-n=V*n on the sur-
face of bubbles. Here, n is the umit outward normal vector on the
surface of the bubble ¢. As shown m Sangam et al. [1991] and n
Sangam and Didwama [1993b], the velocity potential can be deter-
mined to a very good accuracy with a pomt-dipole approximation
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¢=G-x~ Y D" VS (x—x7), 2)
a=]

where S, 1s a Green’s function for Laplace equation m a periodic
domain [Hasimoto, 1959, Sangar et al., 1991] and D* 1s the dipole
strength. The condition that the average of u' over the urit cell must
vamush 1s satisfied by taking (cf. Sangaru and Didwarnia [1993b]).

G =(4m)in“ 3

where T1s the volume of the unit cell. Physically, G is the back flow
caused by the relative motion of the bubbles. To calculate the trajec-
tory of bubbles we must apply force balance on each bubble (as-
sumed to be massless). The mpulse defined by I°‘=—pjsu(pnds
plays a role analogous to the momentumn of a particle in Newto-
mian mechanics. We write the force balance as

d—Ia=F“=F +F +F, +F,; +F @

a g TH, TE, +h +k,
where F,=—4ma’/3 g is a force due to buoyancy, F, is a viscous force,
F..- 15 a force due to temporal and spatial variations n the ensem-
ble-averaged velocity <u> of the mixture, F7 15 a force on the bub-
ble during 1ts collision with other bubbles, ¥, 1s a force due to po-
tential flow mteractions. As shown m Sangam and Didwarua [1993a],
the last quantity 1s evaluated from

N
Fi=-4mpY.D"D’: VY VS,(x*~x), S
¥=1

where the singular part of S, must be removed from S, for Y=0 be-
fore evaluatng the third derivative of S,. The viscous force is evalu-
ated by using amethod described m Sangam and Didwarua [1993b].
The mam modifications m the present study are concerned with
the evaluation of F.,. and F,. In Sangam and Didwama [1993b]
we considered a special case of constant average velocity, whereas
n the present study we are mterested i the case of simple shear.
For thus purpose we use a slightly modified version of the expres-
sion proposed by Auton et al. [1988]

P =Rt () 158 ), ©
where the derivatives of <u> are evaluated at x=x* m=4npa’/3
1s the mass of flud having the same volume as the bubble and D/
Dt=0/dt+<u>-V 15 a time derivative following the average motion
of the muxture. While we do not discuss about using (6), this relation
1s consistent with several known results. The above expression can
be shown to give the carrect force on a bubble for the cases of (i) a
small amplitude oscillatory flow examined i Sangam et al. [1991],
(11) pure extensional flow <u>=ex; with e;~e,, at least for which
the flow 1s wrotational, and 1) the simple shear flow past a single
spherical bubble with weak shear. No restrictions on the magnitude
of ¢ are needed for the validity of (6) i the above two cases. Finally,
(6) also gives the correct Iift force on a bubble m dilute dispersions
m the presence of simple shear, for which the magmitude of vortic-
ity 1s small compared to V/a where V is a characteristic magmtude
of bubbles’ relative velocity. Thus, we expect it to provide a very
good approximation for ignited states. Note that for the case of an
1solated bubble with velocity V7, the expression (6) reduces to the
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one given by Auton et al [1988] upon substituting I=mV/72.

In simulations of non-deformable bubbles with potential flow, it
1s commonly observed that the bubbles will come mto contact while
still movmg at a finite relative velocity. Inn a physical suspension
such a collision could lead to a bubble bounce or to coalescence
depending on the Weber number based on the relative velocity. For
the sake of simplicity in the simulation, it is converuernt to assume
that the bubbles always bounce and this can be achieved m prac-
tice without violating the free slip boundary condition on the bubble
surface through the addition of salt to the suspendmg water [Lessard
and Zieminski, 1971; Tsao and Koch, 1994] Thus, we mclude a
collisional force m the smulations to achieve an energy and momen-
tum conserving bubble bounce. The collisional force F, was evalu-
ated m Sangam and Didwara [1993b] by assuming the collision
process to be mstantaneous and momentum conserving. This has
some difficulties m numerical mplementation. To overcome this
we used a soft core repulsive potential to model the collision process.
Specifically, the collision force was taken to be

Fi=-V.0. with o,=3 3T, (2~ ™
a=1y=1
Here T, if bubbles ot and ¥ are not overlapping. Otherwise, T ,,=1",
A,” where T, is a constant and A, is the component of the relative
velocity V*—V”along the line joming the position of the bubbles at
the onset of overlap.

The numerical algonthm consisted of determiming the force on
each bubble given position and mmpulse of all the bubbles m the
suspension and mtegrating I*=F* and x*=v* using a fourth-order
Runge-Kutta scheme. This method 1s more efficient and faster than
the modified Euler algorithm used m Sangam and Didwania [1993b]
for the mtegration of time. In the Runge-Kutta scheme, bubbles can
be slightly overlapped dependmg on the time step mducmg the melu-
sion of collisional force from soft core potential m determiming new
velocities of bubbles. The time step for mtegration was chosen to
scale with the root-mean-squared velocity of the bubbles.

SIMULATION RESULTS AND KINETIC THEORY
FOR SIMPLE SHEAR MOTION

In thus paper we shall consider smple shear motion of dilute bub-
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Fig. 1. Temperature as a function of time, initial condition at var-
ious Reynolds numbers and volume fraction $=0.005.

bly liquids under microgravity, ie. g=0, and <u>=Yx,0,. The dis-
tances are rendered non-dimensional with a, the velocity with a,
and the time with 1/y. Typical simulation results are illustrated m
Fig 1 which shows velocity variance <V*> as a function of time
for $=0.005 at three different Reynolds numbers Re=7a’l. We
see that the fmal steady state, at Re,=140, depends on the mutial con-
ditions of velocity variance. If the bubble suspension 1s stired suf-
ficiently before shearmg, then the final state has very large velocity
fluctuations. We shall refer to this as the ignited state. If, on the other
hand, the mutial velocity fluctuations are small, then the final state
has very small velocity fluctuations; the bubbles essentially follow
the imposed shear. We shall refer to this as the guenched state. Such
multiple steady states are not observed for all Re; and ¢, the vol-
ume fraction of bubbles. For example, as seen m Fig. 1, the final
state is the igmted state when Re =170 regardless of the mitial con-
ditions. And, smmilarly, the final state 15 always the quenched state
when Re,=80.

Before we present an approximate kmetic theory and a more de-
taled comparison between the theory and numerical smulations, 1t
will help to have a qualitative understanding of the phenomenon
The steady state variance 1s determined by balancing between the
energy mput m shearmg the dispersion and the viscous energy dis-
sipation as shown m Fig. 2 graphically. The former can be approxi-
mated to equal 1Y while the latter to 12muna<V"*> Energy input
by shearmg has non-lmear dependence on velocity variance where-
as energy loss due to viscous dissipation is linearly dependent on
temperature. From thus balance, two stable solutions and one un-
stable solution exist. The steady state 1s reached relymg on the mitial
velocity variance. When the mutial variance 1s below the unstable
solution, the quenched state 1s reached. The 1gnited state will be ac-
complished when the mitial variance is above the unstable solu-
tion. As volume fraction mncreases, the energy mput line will shuft
to dotted line resulting m one stable steady state at lugher volume
fractions. Here, 11, is the (dimensional) dispersed-phase shear vis-
cosity, n is the number density of bubbles, and <V*> is the di-
mensional velocity variance. In the ignited state, the collision time
7.=a/(0<V">>'"") is much shorter than the viscous relaxation time
7,=pa’(18), and the leading order velocity distribution as Re,—>eo
1s sotropic Maxwellian owmg to nigorous collisions of bubbles.
Thus we can estimate LI, from the kinetic theory of gases by taking
the mass of bubbles to be their virtual mass m/2 and the mean free
path to be a/ to yield p~pa<V">*. The energy balance then shows

Enargy

Velocity variance, <vi>

Fig. 2. Graphical demonstration of multiple steady states in shear-
ed bubble suspension.
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that <V*>~(Re/0)ya" In the quenched state, <V>> is very small,
and, consequently, T,<<7,. Thus, the majority of the bubbles move
with the velocity of the fluid The velocity distribution 13 expected
be very different from Maxwelhan because bubbles relax close to
the local fluid velocity. The mmtial conditions mfluence the final steady
state for mtermediate values of Re; by setting up the rutial value of
the collision time. At smaller Re,, the viscous relaxation time 1s small
enough to dissipate the fluctustions leading always to the quenched
state while the fluctuations mduced by the mmposed shear are suf-
ficient at large enough Re; to eventually make 7,<<1, correspond-
mg to the igmited state.
1. Kinetic Theory

For a spatially homogeneous dispersion of bubbles, the velocity
distribution function (V) satisfies

af

SV (VD=0 ®
Since ¢ 1s very small, the bubbles only undergo occasional mterac-
tions. It 18 well known that potential flow bubbles often undergo
actual collisions and Tsao end Koch [1994] showed that for low
Weber number bubbles with short-range repulsive forces these col-
lisions are nearly elastic. In this sumple kmetic theory we will neglect
the hydrodynamic mteractions between bubbles and treat the colli-
sions as perfectly elastic. Substituting m (4) ¥,=F,=0, ¥ ,=—12ruaV,
I=mV/2, F.,. =—(1/2)mV,§, (lift force), expressmg the contribution
due to the collisional force m the notation of Chapman and Cowl-
mg [1970], and non-dimensionalizing we obtain

o 2 e f
p a—vk[(Sszn‘FSt Vk)f]_at ®

where the Stokes number, St=Re,/18=vt,=pya’A18W), is a non-di-
mensional viscous relaxation time and 0,00t is the rate of change in
fat a fixed pomt due to collisional encounters. As shown i Chapter
3 of Chapman and Cowlmg, this latter quantity 1s expressed m terms
of an integral

%L Jaw s [ )~ Ew) ) o

Here, w=<u>+V 1s the velocity of a representative bubble m col-
lision with another bubble with velocity w,, the velocities of the bub-
bles at the end of the collision encounter bemng W and wi, and k
and Kk, are parameters that depend on the relative velocities and ori-
entation of the bubbles at the onset of the collision. For small ¢ we
expect the dispersed-phase pressure to be dominated by its kinetic
part and therefore P,~Pi=n<LV>=(1/2)p¢<V,V> (cf Sangani
and Didwania [1993a]). We shall non-dimensionalize pressure by
pYaii2.

To determine the pressure and velocity variance, we multiply (9)
by $V,V, and integrate over the velocity space to obtam

% +[P; 8, +P,,8, +25t7' P, ] =D(Py), (11
where, m obtaiung the terms mside the square brackets on the left-
hand side, use has been of mtegration by parts, and

a.f
©(P)=0 jdvv,vvja—t. (12)

To make further progress we need to determme f and ®,(P,). Exact
May, 2002

solution for f 1s rather difficult to obtamn and hence we have devel-
oped approximate methods. Fist, we develop an approximation m
which the shear-induced collisions are neglected m evaluating 9,1/
o, ie, the actual velocities w, wy, etc. in (10) are replaced by the
relative velocities V, V, etc. The resultng theory will explain the
ongm of multiple steady states but not the absence of quenched state
at ligh enough Re,. The theory will be subsequently modified to
melude the shear-mduced collisions which play an mportant role
m the behavior of quenched states.

We have developed two approxmmate theories for evaluating <@,
(P,)- Both give 1dentical results. One 1s based on the method due to
Grad [1949] 1 which {15 expanded in a series of Hermite polyno-
mials:

1/ 1 il
f(V) =|:1 +§(aij ‘35,yakk)a VY, +‘I\JfM3 (13

where f,, corresponds to an 1sotropic Maxwellian distribution. The
constant a,, 15 related to the second moments of velocity and tem-
perature T by

(wiv) =T(5; +ay).

The trace a,; 13 zero because the bubble phase temperature 1s one-
third of the velocity variance. The seres 1s truncated keepmg only
the first two terms and (10) and (12) are evaluated m terms of a,,
Substituting for @,(P,) in (11) and solving the resulting equations
then yields a, and P,. In the other method, which we describe m
more detail here, we model the collision process as sumilar to that
between Maxwell molecules. Thus, we assume that the force F be-
tween two bubbles 1s repulsive and along the line joming the center
of the two bubbles separated by a distance r with F=xr"> where K isa
constant of proportionality. For this special case it tums out that the
collision term (10) assumes a particularly simple form and one finds

O(P)=2"0(pS,—P,), 14

where p=1/3P,, and A is a constant related to k. Now m the limit
St—>eo, we expect the variance to become very large and the col-
lision term on the right-hand side of (9) to dommate leading to an
1sotropic Maxwellian velocity distribution. The dispersed-phase vis-
cosity will then be expected to approach the viscosity of dilute gas
consisting of hard-sphere molecules. Matching with the known ex-
pression for that viscosity requires

24

54T
T=<V2>/3 being the bubble phase temperature. This choice of A" is
equivalent to choosing the force law constant ¥ of Maxwell mole-
cules to be proportional to T.

Since T" in due course will be shown to be O(1/¢), it should be
noted that X'$=0(1) and the righthand side of (11} is the same crder
of magnitude as the other terms m that equation 1 the imit ¢—0.
Thus, we need to keep the collision term i our analysis even for
very dilute suspensions. Now substitutmg (14) and (15) mto (11),
using p=0<V,V >3=0T, and solving for the steady state conditions,
we obtain

A =AT” with A (15

_ Plz _ }Ld)sza
St AT StT'+¢AT™

P—Py (16)
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and P,;=P;,=0. To complete the solution we need to determine T.
Thus 1s accomplished by taking the trace of (11) to yield at steady
state the energy equation for the dispersed phase

P, +3¢St™T=0 (18)

according to which the work done m shearmg the suspension 1s dis-
sipated by the viscous drag. Substitutmg for P, from (17) mto (18)
yields a cubic equation for T"” whose three roots including zero are
given by

o eSS 12, f 24
T, =0, T ! — ) 1

where we have used the numerical estimate of A from (15).

It 15 easy to show that T, corresponds to an unstable state so that
the quenched and ignited states we found in numerical simulations
(cf. Fig. 1) correspond respectively to T, and T;. Moreover, we see
that the 1gruted state exasts only when Re,=18St exceeds a critical
value given by Re,=18,/24=88.18.... This explams why the final
state 1s the quenched state regardless of the imtial variance for Re,=
80. For Re, =140, the variance corresponding to the unstable state 2
1s approximately 4.3 according to (19). Thus, as discussed 1 the
earlier, if rutial variance i1s smaller than this value, the final state
must be the quenched state, and a higher mutial variance should lead
to the igrited state. Sumulations for Re; =140 qualitatively agree with
this prediction although we find that even a slightly hugher mitial
variance of 6 leads to a quenched state. In fact, the variance reaches
a maximum of about 15 before eventually decreasing to a varush-
mgly small value corresponding to the quenched state. This quanti-
tative discrepancy may arise due to a number of reasons mcluding
() the neglect of shear-mduced collisions m the theory, (1) fuute
number of bubbles (N=32) used i the numerical simulations, (111)
the use of soft core repulsive potential mn simulations, and (iv) the
neglect of hydrodynamic mteractions mn the theory Fmally, we see
that the theory we have presented fails completely in the case of
Re,=170 m predicting the existence of only one stable state.

The theory we have presented so far 1s adequate for determming
the steady state vaniance n the 1gmited state for which the root-mean-
squared velocity 1s much greater than ya and for giving the crite-
rion for extinction of the ignited state, 1e. Re,<Re,. However, the
preceding theory gives poor estinates for T, and T, because it ne-
glects shear-mduced collisions whiuch are mportant for these two
states.

To mmprove the theory, we now consider the lmit in which the
root-mean-square velocity 1s much smaller than Ya, a situation ap-
plicable to the quenched state. Smce the collisions are mfrequent in
this state, T,<<7, and the majority of bubbles travel with the ve-
locity of the fluid. Therefore, m this limit @,(P,) (cf (12)) can be
determmed from simple geometric considerations by using w=<u>
to yield

512

D,(P,;) =20,(P;) =80,.(P;;) :_¢2> D,(P) =— 8

0 .2
315n 354) 20)

and @,(P,,)=,(P,;)=0. Substituting for ®,(P,) from (18) mto (9)
and solving for steady state conditions yield

256 64 oo dm. 9
= =277 =" +2 24 7

P=4Ps =g S0 P =g SO 1+ 5L e
_ 64 2,9 on

Pn—3—153t¢[1+—168t} 22)

Thus, the quenched state variance 1s dominated by the value of <V7>
and equals roughly (647/315)St'¢ in the limit of small ¢ for Stokes
numbers of magmitude 5 or greater. At ¢=0.005 and Re=18St=
140, the conditions for the simulations shown m Fig. 1, thus gives
an approxumate variance of 1.5 whereas the simulation gave a vansh-
mgly small mumber. This occurs because the bubbles arrange them-
selves eventually m positions where avoid collisions making their
velocities the same as the local fluid velocity and it is therefore an
artifact of the simulation with periodic boundary conditions. It 1s
possible to avoid thus problem m sumulations that neglect hydrody-
namic mteractions by using the Direct-simulation Monte Carlo meth-
od [Kumaran et al., 1993].

We have shown that the ignited state exists for all Re>Re,,. Now
we shall determine m what part of this regime, one has multiple
steady states and m what portion only the 1gnited state exists. If the
shear-induced variance Re’0 is greater than the variance of the un-
stable state 2, i.e. ORe;*¢™) (cf (19)), then the imposed shear will
create enough velocity fluctuations to take the suspension past the
unstable state 2 even when the initial variance 15 zero. Conse-
quently, only the ignited state will exist when Re’) exceeds a certain
O(1) number. To estimate this number we constructed an ad-hoc
approxmmation for @,(P,) by supenmposing its values m the two
limits as given by (14) and (20). Solving the resulting equations for
P, at steady state yielded a quadratic equation in T**. One root of
this equation 1s always negative and the other three comrespond qual-
ttatively to the three solutions (quenched, unstable, and igmted) given
by (19). However, when ¢ is increased from zero at a fixed value
of St=Re/18 that 1s greater than 24, we now find that the quenched
and unstable state vaniances approach each other. The variances of
these two states become equal at

78757
¢C =(—

143
o B
2304) St7, or Sf¢, =3.231K 23)

For ¢=9, the two roots become complex so that the only physi-
cally mearingful solution to the equations corresponds to the ignited
state.

The above criterion can also be used for estmating Re, beyond
which the only steady state 15 the ignited state for given ¢. At ¢=
0.005, this yields the transition Re; of 155.6. Thus 1s m agreement
with the simulations shown m Fig. 1 for which the multiple states
are observed at Re,=140 but only the ignited state at Re,=170.
2. Comparison with Simulations

We now compare the theory and simulations i more detail. Fig.
3 15 the phase diagram of quenched, ignited, and multiple (quenched
plus 1gnited) states for bubbly hquids. For small ¢ we expect only
the quenched state when Re, 1 less than 88 and the multiple (quench-
ed plus ignited) states for Re>88 and ¢Re’>3231x18°=18843.
For each value of ¢, we carry out simulations at different values
of Re, with an mitial variance of zero and determine the critical value
of Re, for which the final state 15 ignited. The pluses are the results
obtammed by simulations with N=32 and full hydrodynamic mter-
actions together with the soft core repulsive potential for overlap-
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Fig. 3. Multiple steady states-ignited state transition. The solid
curve is the theory prediction from Kinetic theory and
squares and triangles are, respectively, the results of simu-
lations with and without hydrodynamic interactions.
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Fig. 4. Temperatures with respect to Reynolds numbers for ¢=
0.03 with theoretical predictions as shown dashed line. The
squares are the results obtained from the simulations with
soft-core potential, and diamonds are the results for hard
core potential.

ping bubbles as described m section 2. For the purpose of comperison
with the theory which neglected the hydrodynamic mteractions al-
together and modeled the collision process as that corresponding to
hard spheres, we also carmied out another set of simplified smula-
tions i1 which these conditions were satisfied exactly. These simu-
lations with N=100 are shown by circles. The latter results were
also confirmed to be free from firute N effects by another method
[Direct-simulation Monte Carlo, Kumaran et al,, 1993). We believe
that the better agreement obtamed with the full hydrodynamic m-
teraction calculations represented by the pluses 1s fortuitous.
Fig. 4 shows a comparison between the theory (cf (19)) and sim-
ulations at $=0.03 varymng Reynolds number. For this ¢, the criti-
cal Re, for multiple steady states to exist is about 86 which approxi-
mately comeides with the extmction of the ignited state branch so
that we observe only the igmted state at larger Re,. The simulation
results mdicated by filled circles were obtaned with full hydrody-
namic nteractions end soft core potential. We find that there is con-
siderable discrepancy between the theory and simulations. This re-
sults from the use of soft core potential in simulations which allow
bubbles to overlap considerably resulting m a decrease m the apper-
ent volume fraction of bubbles. Smce the variance varies roughly

May, 2002

Fig. 5. The kinetic, collisional, and hydredynamic contributions to
the bubble-phase shear viscosity for Re,=150 and $=0.03.

as 1/¢%, the use of soft core potential results m a higher variance.
To correct for this effect we carried out simulations with no hydro-
dynamic mteractions with both soft as well as hard core potentials.
The open circles m Fig. 4 represent the results obtamned by mult-
plymng the results of full hydrodynamic mteractions with the cor-
rection ratio accounting for the use of soft core potential. We see
that with this correction, the theory and simulations are in very good
agreement with each other.

Fig. 5 shows the kinetic, collisional, and hydrodynamic (or poten-
tial) contributions [cf Sangam and Didwama 1993a; Bulthus et
al,, 1994 for definitions] to the dispersed-phase shear viscosity (non-
dimensionalized by 1/2pya’) LL,=—P, as time progresses. As expected,
the collision and potential parts are seen to make negligible contri-
butions to the overall value of shear viscosity at $=0.03. Note that
potential mteraction between bubbles is still sigruficant in dynam-
1cs. The average value of the kinetic part 1s seen to be m a very good
agreement with the value predicted by theory (cf. (17)) provided
that we use the value of average variance computed i simulations
to substitute for T mstead of using (19). This distinction 18 neces-
sary to make since T for the soft core potential s different from the
theoretical estumate.

Fig. 6 shows a comparison between the theory and simulations
for P,,/P,,. The computed values nclude the collision and hydro-
dynamic parts also. Once again we see a reasonable agreement be-
tween the two. More mportently, it must be noted that the dis-
persed-phase exlubits considerable normal stress differences.

25

(smuum results at sach

timee, £

Fig. 6. P,,/Py, as a function of time for Re,=150 and $=0.03.



Numerical Simulation and Kinetic Theory of Bubbly Liquds 369

Finally, we note that a discrepancy that still remams between the
theory and simulations 1s the rather high value of the maximum var-
1ance seen m Fig. 1 for the quenched state smnulation with Re,=140.
Even after accounting for the shear-induced vanance, our approxi-
mate theory estimates the variance of the unstable state 2 to be ap-
proximately 5 which 1s much lower than the maximum value of
about 15 obtamed m the simulation. Thus, it appears that our theory
underestimates the magnitude of the vanance m the unstable state.

CONCLUDING REMARKS

In thus paper we have addressed the problem of the dispersed-
phase rheology m suspensions of spherical bubbles at relatively large
Reynolds numbers. We found that the rheology 1s quite complex
even when the microscale physics governing the bubble motion 1s
considerably simplified n terms of lift and viscous forces. The key
to understandmg the results of simulations has been to appreciate
the dependence of the dispersed-phase viscosity on its temperature.
Thus dependence 1s nonlinear and gives rise to multiple steady states.
The calculations presented here also show a need to nclude the en-
ergy balance and temperature m the averaged description of flows
of suspensions.

Our simulations and theory have thus far been restricted to small
¢ where the shear-induced fluctuations are the largest. We have ex-
tended the theory to lugher volume fractions by usmg the theory of
dense gases and Grad’s moment expansion approximation (cf. (13)).
The predictions of thus theory are being currently tested for non-
dilute suspensions.

Orne motivation of this study was to mvestigate the possibility
that the presence of shear may stabilize bubbly liquids. We can now
make a rough estimate of when stabilization 1s possible. At present
we are studymg the flow of bubbly suspension under simple shear
m the presence of gravity.

In that case the dispersed-phase pressure depends on both the
mean relative velocity of the bubbles induced by buoyancy and lift
forces and mean shear rate. The mean relative motion gives a ne-
gative contribution to the pressure via hydrodynamic contribution
as shown m Sangani and Didwaria [1993a], while the shear gives
a positive contribution via the kinetic and collision contributions.
An exact criterion for the stability has not been determmed yet, but
preliminary calculations (simulations) already show that the sus-
pension 1s stable at least when the Reynolds number based on shear
is in the ignited state regime. Thus, let us take Re,=pya’/1=100 for
the purpose of estimating when shear may play an important stabi-
lizing role. For 1 mm radius bubbles in water, this requires y=100s".
For ar-water system with ¥a=10 cmy/s, the small We approxima-
tion 1s justified since We=0.14. To provide y of 100s™ m a flow of
bubbly suspension through a pipe of radius R (in cm) we need the
mean flow rate to be 100R (in cm/s). Smce we are dealing with large
Reynolds numbers, one question that immediately comes to mind
1s what 1f the turbulence would set up much before the high shear
required for the ignited state. Taking the mean flow rate to equal
YR, the Reynolds number Re, based on the pipe radius will bel 00
(R/a)’. This will be indeed quite large for many practical applica-
tions. However, 1t should also be noted that the turbulence will be
considerably delayed due to hugh Reynolds stress created by the
velocity fluctuations induced by the presence of shear. A parameter

that 13 expected to be more mmportant i determinmg the onset of
turbulence 1s Re; =Re, V4L, the Reynolds number based on the ef-
fective viscosity [t of the mixture. From the defmition of the mix-
ture stress given m Biesheuvel and Wingaarden [1984] and San-
gani and Didwama [1993a], we find that the effective viscosity of
the mixture 1 the igruted state 15 close to the dispersed-phase viscos-
ity, or, n the present example, W'=100 W Thus, m fact, it is pos-
sible to have a significant range of R/a and Re, values over which
the mean flow will be steady and one-dumensional. We hope to carry
out a more detailed analysis based on averaged equations to test
this speculation mn our future work.
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